Exercise 28

If $g(x)=x^{4}-2$, find $g^{\prime}(1)$ and use it to find an equation of the tangent line to the curve $y=x^{4}-2$ at the point $(1,-1)$.

Solution

Determine the derivative of $g(x)$.

$$
\begin{aligned}
g^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[(x+h)^{4}-2\right]-\left[x^{4}-2\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[\left(x^{4}+4 x^{3} h+6 x^{2} h^{2}+4 x h^{3}+h^{4}\right)-2\right]-x^{4}+2}{h} \\
& =\lim _{h \rightarrow 0} \frac{4 x^{3} h+6 x^{2} h^{2}+4 x h^{3}+h^{4}}{h} \\
& =\lim _{h \rightarrow 0}\left(4 x^{3}+6 x^{2} h+4 x h^{2}+h^{3}\right) \\
& =4 x^{3}
\end{aligned}
$$

Plug in $x=1$ to this formula to get $g^{\prime}(1)$.

$$
g^{\prime}(1)=4(1)^{3}=4
$$

This is the slope of the tangent line to the curve at $x=1$. Use the point-slope formula and the provided point $(1,-1)$ to get the equation of this line.

$$
\begin{gathered}
y-(-1)=4(x-1) \\
y+1=4 x-4 \\
y=4 x-5
\end{gathered}
$$

Below is a graph of the curve along with the tangent line at $x=1$.

